Skip to content

Python library to read, write and convert data files with formats BSON, JSON, NDJSON, Parquet, ORC, XLS, XLSX, XML and many others

License

Notifications You must be signed in to change notification settings

datenoio/iterabledata

Repository files navigation

Iterable Data

Iterable Data is a Python library for reading and writing data files row by row in a consistent, iterator-based interface. It provides a unified API for working with various data formats (CSV, JSON, Parquet, XML, etc.) similar to csv.DictReader but supporting many more formats.

This library simplifies data processing and conversion between formats while preserving complex nested data structures (unlike pandas DataFrames which require flattening).

Features

  • Unified API: Single interface for reading/writing multiple data formats
  • Automatic Format Detection: Detects file type and compression from filename
  • Support for Compression: Works seamlessly with compressed files
  • Preserves Nested Data: Handles complex nested structures as Python dictionaries
  • DuckDB Integration: Optional DuckDB engine for high-performance queries
  • Pipeline Processing: Built-in pipeline support for data transformation
  • Encoding Detection: Automatic encoding and delimiter detection for text files
  • Bulk Operations: Efficient batch reading and writing
  • Context Manager Support: Use with statements for automatic resource cleanup

Supported File Types

Core Formats

  • JSON - Standard JSON files
  • JSONL/NDJSON - JSON Lines format (one JSON object per line)
  • JSON-LD - JSON for Linking Data (RDF format)
  • CSV/TSV - Comma and tab-separated values
  • Annotated CSV - CSV with type annotations and metadata
  • CSVW - CSV on the Web (with metadata)
  • PSV/SSV - Pipe and semicolon-separated values
  • LTSV - Labeled Tab-Separated Values
  • FWF - Fixed Width Format
  • XML - XML files with configurable tag parsing
  • ZIP XML - XML files within ZIP archives

Binary Formats

  • BSON - Binary JSON format
  • MessagePack - Efficient binary serialization
  • CBOR - Concise Binary Object Representation
  • UBJSON - Universal Binary JSON
  • SMILE - Binary JSON variant
  • Bencode - BitTorrent encoding format
  • Avro - Apache Avro binary format
  • Pickle - Python pickle format

Columnar & Analytics Formats

  • Parquet - Apache Parquet columnar format
  • ORC - Optimized Row Columnar format
  • Arrow/Feather - Apache Arrow columnar format
  • Lance - Modern columnar format optimized for ML and vector search
  • Delta Lake - Delta Lake format
  • Iceberg - Apache Iceberg format
  • Hudi - Apache Hudi format

Database Formats

  • SQLite - SQLite database files
  • DBF - dBase/FoxPro database files
  • MySQL Dump - MySQL dump files
  • PostgreSQL Copy - PostgreSQL COPY format
  • DuckDB - DuckDB database files

Statistical Formats

  • SAS - SAS data files
  • Stata - Stata data files
  • SPSS - SPSS data files
  • R Data - R RDS and RData files
  • PX - PC-Axis format

Geospatial Formats

  • GeoJSON - Geographic JSON format
  • GeoPackage - OGC GeoPackage format
  • GML - Geography Markup Language
  • KML - Keyhole Markup Language
  • Shapefile - ESRI Shapefile format

RDF & Semantic Formats

  • JSON-LD - JSON for Linking Data
  • RDF/XML - RDF in XML format
  • Turtle - Terse RDF Triple Language
  • N-Triples - Line-based RDF format
  • N-Quads - N-Triples with context

Log & Event Formats

  • Apache Log - Apache access/error logs
  • CEF - Common Event Format
  • GELF - Graylog Extended Log Format
  • WARC - Web ARChive format
  • CDX - Web archive index format
  • ILP - InfluxDB Line Protocol

Email Formats

  • EML - Email message format
  • MBOX - Mailbox format
  • MHTML - MIME HTML format

Configuration Formats

  • INI - INI configuration files
  • TOML - Tom's Obvious Minimal Language
  • YAML - YAML Ain't Markup Language
  • HOCON - Human-Optimized Config Object Notation
  • EDN - Extensible Data Notation

Office Formats

  • XLS/XLSX - Microsoft Excel files
  • ODS - OpenDocument Spreadsheet

Streaming & Big Data Formats

  • Kafka - Apache Kafka format
  • Pulsar - Apache Pulsar format
  • Flink - Apache Flink format
  • Beam - Apache Beam format
  • RecordIO - RecordIO format
  • SequenceFile - Hadoop SequenceFile
  • TFRecord - TensorFlow Record format

Protocol & Serialization Formats

  • Protocol Buffers - Google Protocol Buffers
  • Cap'n Proto - Cap'n Proto serialization
  • FlatBuffers - FlatBuffers serialization
  • FlexBuffers - FlexBuffers format
  • Thrift - Apache Thrift format
  • ASN.1 - ASN.1 encoding format
  • Ion - Amazon Ion format

Other Formats

  • VCF - Variant Call Format (genomics)
  • iCal - iCalendar format
  • LDIF - LDAP Data Interchange Format
  • TXT - Plain text files

Supported Compression Codecs

  • GZip (.gz)
  • BZip2 (.bz2)
  • LZMA (.xz, .lzma)
  • LZ4 (.lz4)
  • ZIP (.zip)
  • Brotli (.br)
  • ZStandard (.zst, .zstd)
  • Snappy (.snappy, .sz)
  • LZO (.lzo, .lzop)
  • SZIP (.sz)
  • 7z (.7z)

Requirements

Python 3.10+

Installation

pip install iterabledata

Or install from source:

git clone https://github.com/datenoio/iterabledata.git
cd pyiterable
pip install .

Quick Start

Basic Reading

from iterable.helpers.detect import open_iterable

# Automatically detects format and compression
# Using context manager (recommended)
with open_iterable('data.csv.gz') as source:
    for row in source:
        print(row)
        # Process your data here
# File is automatically closed

# Or manually (still supported)
source = open_iterable('data.csv.gz')
for row in source:
    print(row)
source.close()

Writing Data

from iterable.helpers.detect import open_iterable

# Write compressed JSONL file
# Using context manager (recommended)
with open_iterable('output.jsonl.zst', mode='w') as dest:
    for item in my_data:
        dest.write(item)
# File is automatically closed

# Or manually (still supported)
dest = open_iterable('output.jsonl.zst', mode='w')
for item in my_data:
    dest.write(item)
dest.close()

Usage Examples

Reading Compressed CSV Files

from iterable.helpers.detect import open_iterable

# Read compressed CSV file (supports .gz, .bz2, .xz, .zst, .lz4, .br, .snappy, .lzo)
source = open_iterable('data.csv.xz')
n = 0
for row in source:
    n += 1
    # Process row data
    if n % 1000 == 0:
        print(f'Processed {n} rows')
source.close()

Reading Different Formats

from iterable.helpers.detect import open_iterable

# Read JSONL file
jsonl_file = open_iterable('data.jsonl')
for row in jsonl_file:
    print(row)
jsonl_file.close()

# Read Parquet file
parquet_file = open_iterable('data.parquet')
for row in parquet_file:
    print(row)
parquet_file.close()

# Read XML file (specify tag name)
xml_file = open_iterable('data.xml', iterableargs={'tagname': 'item'})
for row in xml_file:
    print(row)
xml_file.close()

# Read Excel file
xlsx_file = open_iterable('data.xlsx')
for row in xlsx_file:
    print(row)
xlsx_file.close()

Format Detection and Encoding

from iterable.helpers.detect import open_iterable, detect_file_type
from iterable.helpers.utils import detect_encoding, detect_delimiter

# Detect file type and compression
result = detect_file_type('data.csv.gz')
print(f"Type: {result['datatype']}, Codec: {result['codec']}")

# Detect encoding for CSV files
encoding_info = detect_encoding('data.csv')
print(f"Encoding: {encoding_info['encoding']}, Confidence: {encoding_info['confidence']}")

# Detect delimiter for CSV files
delimiter = detect_delimiter('data.csv', encoding=encoding_info['encoding'])

# Open with detected settings
source = open_iterable('data.csv', iterableargs={
    'encoding': encoding_info['encoding'],
    'delimiter': delimiter
})

Format Conversion

from iterable.helpers.detect import open_iterable
from iterable.convert.core import convert

# Simple format conversion
convert('input.jsonl.gz', 'output.parquet')

# Convert with options
convert(
    'input.csv.xz',
    'output.jsonl.zst',
    iterableargs={'delimiter': ';', 'encoding': 'utf-8'},
    batch_size=10000
)

# Convert and flatten nested structures
convert(
    'input.jsonl',
    'output.csv',
    is_flatten=True,
    batch_size=50000
)

Using Pipeline for Data Processing

from iterable.helpers.detect import open_iterable
from iterable.pipeline.core import pipeline

source = open_iterable('input.parquet')
destination = open_iterable('output.jsonl.xz', mode='w')

def transform_record(record, state):
    """Transform each record"""
    # Add processing logic
    out = {}
    for key in ['name', 'email', 'age']:
        if key in record:
            out[key] = record[key]
    return out

def progress_callback(stats, state):
    """Called every trigger_on records"""
    print(f"Processed {stats['rec_count']} records, "
          f"Duration: {stats.get('duration', 0):.2f}s")

def final_callback(stats, state):
    """Called when processing completes"""
    print(f"Total records: {stats['rec_count']}")
    print(f"Total time: {stats['duration']:.2f}s")

pipeline(
    source=source,
    destination=destination,
    process_func=transform_record,
    trigger_func=progress_callback,
    trigger_on=1000,
    final_func=final_callback,
    start_state={}
)

source.close()
destination.close()

Manual Format and Codec Usage

from iterable.datatypes.jsonl import JSONLinesIterable
from iterable.datatypes.bsonf import BSONIterable
from iterable.codecs.gzipcodec import GZIPCodec
from iterable.codecs.lzmacodec import LZMACodec

# Read gzipped JSONL
read_codec = GZIPCodec('input.jsonl.gz', mode='r', open_it=True)
reader = JSONLinesIterable(codec=read_codec)

# Write LZMA compressed BSON
write_codec = LZMACodec('output.bson.xz', mode='wb', open_it=False)
writer = BSONIterable(codec=write_codec, mode='w')

for row in reader:
    writer.write(row)

reader.close()
writer.close()

Using DuckDB Engine

from iterable.helpers.detect import open_iterable

# Use DuckDB engine for CSV, JSON, JSONL files
# Supported formats: csv, jsonl, ndjson, json
# Supported codecs: gz, zstd, zst
source = open_iterable(
    'data.csv.gz',
    engine='duckdb'
)

# DuckDB engine supports totals
total = source.totals()
print(f"Total records: {total}")

for row in source:
    print(row)
source.close()

Bulk Operations

from iterable.helpers.detect import open_iterable

source = open_iterable('input.jsonl')
destination = open_iterable('output.parquet', mode='w')

# Read and write in batches for better performance
batch = []
for row in source:
    batch.append(row)
    if len(batch) >= 10000:
        destination.write_bulk(batch)
        batch = []

# Write remaining records
if batch:
    destination.write_bulk(batch)

source.close()
destination.close()

Working with Excel Files

from iterable.helpers.detect import open_iterable

# Read Excel file (specify sheet or page)
xls_file = open_iterable('data.xlsx', iterableargs={'page': 0})

for row in xls_file:
    print(row)
xls_file.close()

# Read specific sheet in XLSX
xlsx_file = open_iterable('data.xlsx', iterableargs={'page': 'Sheet2'})

XML Processing

from iterable.helpers.detect import open_iterable

# Parse XML with specific tag name
xml_file = open_iterable(
    'data.xml',
    iterableargs={
        'tagname': 'book',
        'prefix_strip': True  # Strip XML namespace prefixes
    }
)

for item in xml_file:
    print(item)
xml_file.close()

Advanced: Converting Compressed XML to Parquet

from iterable.datatypes.xml import XMLIterable
from iterable.datatypes.parquet import ParquetIterable
from iterable.codecs.bz2codec import BZIP2Codec

# Read compressed XML
read_codec = BZIP2Codec('data.xml.bz2', mode='r')
reader = XMLIterable(codec=read_codec, tagname='page')

# Write to Parquet with schema adaptation
writer = ParquetIterable(
    'output.parquet',
    mode='w',
    use_pandas=False,
    adapt_schema=True,
    batch_size=10000
)

batch = []
for row in reader:
    batch.append(row)
    if len(batch) >= 10000:
        writer.write_bulk(batch)
        batch = []

if batch:
    writer.write_bulk(batch)

reader.close()
writer.close()

API Reference

Main Functions

open_iterable(filename, mode='r', engine='internal', codecargs={}, iterableargs={})

Opens a file and returns an iterable object.

Parameters:

  • filename (str): Path to the file
  • mode (str): File mode ('r' for read, 'w' for write)
  • engine (str): Processing engine ('internal' or 'duckdb')
  • codecargs (dict): Arguments for codec initialization
  • iterableargs (dict): Arguments for iterable initialization

Returns: Iterable object for the detected file type

detect_file_type(filename)

Detects file type and compression codec from filename.

Returns: Dictionary with success, datatype, and codec keys

convert(fromfile, tofile, iterableargs={}, scan_limit=1000, batch_size=50000, silent=True, is_flatten=False)

Converts data between formats.

Parameters:

  • fromfile (str): Source file path
  • tofile (str): Destination file path
  • iterableargs (dict): Options for iterable
  • scan_limit (int): Number of records to scan for schema detection
  • batch_size (int): Batch size for bulk operations
  • silent (bool): Suppress progress output
  • is_flatten (bool): Flatten nested structures

Iterable Methods

All iterable objects support:

  • read() - Read single record
  • read_bulk(num) - Read multiple records
  • write(record) - Write single record
  • write_bulk(records) - Write multiple records
  • reset() - Reset iterator to beginning
  • close() - Close file handles

Engines

Internal Engine (Default)

The internal engine uses pure Python implementations for all formats. It supports all file types and compression codecs.

DuckDB Engine

The DuckDB engine provides high-performance querying capabilities for supported formats:

  • Formats: CSV, JSONL, NDJSON, JSON
  • Codecs: GZIP, ZStandard (.zst)
  • Features: Fast querying, totals counting, SQL-like operations

Use engine='duckdb' when opening files:

source = open_iterable('data.csv.gz', engine='duckdb')

Examples Directory

See the examples directory for more complete examples:

  • simplewiki/ - Processing Wikipedia XML dumps

More Examples and Tests

See the tests directory for comprehensive usage examples and test cases.

Related Projects

This library is used in:

License

MIT License

Contributing

Contributions are welcome! Please feel free to submit pull requests or open issues.

Changelog

See CHANGELOG.md for detailed version history.

Version 1.0.7 (2024-12-20)

  • Major Format Expansion: Added support for 50+ new data formats across multiple categories
  • Enhanced Compression: Added LZO, Snappy, and SZIP codec support
  • CI/CD: Added GitHub Actions workflows for automated testing and deployment
  • Documentation: Complete documentation site with Docusaurus
  • Testing: Comprehensive test suite for all formats

Version 1.0.6

  • Comprehensive documentation enhancements
  • GitHub Actions release workflow
  • Improved examples and use cases

Version 1.0.5

  • DuckDB engine support
  • Enhanced format detection
  • Pipeline processing framework
  • Bulk operations support

About

Python library to read, write and convert data files with formats BSON, JSON, NDJSON, Parquet, ORC, XLS, XLSX, XML and many others

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages